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Abstract 
A Software Architecture is the overall structure of a system in 
terms of its constituent components and their interconnections. 
In this paper, we describe work to associate behavioural 
specifications with the components of a distributed software 
architecture and an approach to analysing the behaviour of 
systems composed from these components.  The approach is 
based on the use of  Labelled Transition Systems to specify 
behaviour and Compositional Reachability Analysis to check 
composite system models. The architecture description of a 
system is used directly to generate the model used for analysis. 
Analysis allows a designer to check whether an architecture 
satisfies the properties required of it.  The approach is illustrated 
using a case study of an Active Badge system. 

1. Introduction 

Software Architecture has been identified as a promising 
approach to bridging the gap between requirements and 
implementations in the design of complex systems. A 
Software Architecture describes the gross organisation of 
a system in terms of its components and their interactions. 
The initial emphasis in Software Architecture specification 
has thus been  in capturing system structure[5]. The 
authors have previously published papers on the use of the 
architecture description language Darwin for specifying 
the structure of distributed systems and subsequently 
directing the construction of those systems[8,9]. Darwin 
can be used to organise CORBA based distributed 
systems[10]. Darwin describes a system in terms of 
components which manage the implementation of 
services.. Structure is specified in Darwin by declaring the 
bindings between the services required and provided by 
component instances. Darwin has both graphical and 
textual forms with appropriate tool support. 
 
In this paper we investigate the use of Darwin as the 
framework for specifying the component structure and 
their potential interactions for the purpose of behaviour 
analysis rather than system construction. Darwin has been 
designed to be sufficiently abstract to support multiple 

views (cf. [7]), two of which are the behavioural view (for 
behaviour analysis) and the  service view (for construction) 
(Figure 1). Each view is an elaboration of the basic 
structural view: the skeleton upon which we hang the flesh 
of behaviour specification or service implementation.  
 

Behavioural View Service View

Structural View

Analysis Construction/
implementation  

Figure 1. Common Structural View with Service and 
Behavioural Views 

In previous papers we have discussed the use of Darwin to 
produce the service view, with components providing and 
requiring services at their interfaces and with 
implementation definitions for the primitive components. 
In this paper we concentrate on the behavioural view using 
labelled transition systems (LTS) for behaviour 
specification and analysis. We have chosen to use LTS as 
it supports the appropriate compositionality (using 
Compositional Reachability Analysis CRA) with the 
components specified simply as finite state automata[3]. In 
addition, we have techniques for analysing for both safety 
[2] and liveness [3] properties. This is supported by 
software tools which provide for automatic composition, 
analysis, minimisation, animation and graphical display. 
Rather than describe the underlying theory or details of the 
analysis techniques and their relation to Darwin, in this 
paper, we illustrate the approach by example. 
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2. Architecture Behaviour specification: 
an Example 
The example is taken from an Active Badge personnel 
location system implemented by one of the authors in the 
Regis programming environment using hardware from 
Olivetti Research Laboratories in Cambridge. A 
description of this system together with a description of 
the implementation architecture in Darwin may be found 
in [9]. Active Badges emit and receive infrared signals 
which are received/transmitted by a network of infrared 
sensors connected to workstations as depicted in Figure 2. 
The system permits the location and paging of badge 
wearers within a building. 

2.1 Sensor network 
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Figure 2 - Active Badge Sensor Network 

Each sensor consists  of  transmitter and receiver sub-
components. The receiver produces badge sighting 
indications at its interface while the transmitter accepts 
commands to page a specific badge. Commands may 
consist of directions to play a tune on the badge’s speaker 
or to turn on an LED. In this analysis, we do not 
distinguish between the various forms of command. 
Commands may be cancelled before they have been 
received by a badge or they may be acknowledged if sent 
successfully.  The structure of a SENSOR component is 
depicted in Figure 3 together with the Darwin description 
of that structure. 
 
The Darwin description of SENSOR declares an instance 
of each of the primitive component types RX and TX 
representing the receive and transmit behaviour 
respectively. The interface of  the  component consists of a 
set of primitive actions which  are bound to their 
counterparts in the primitive component specification. In 
an implementation these actions, which are declared as 
portals here, become services either provided or required 
by a component[8].   In this more abstract view, no 
commitment is made as to the location of the 
implementation of an action, calling direction and datatype 
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component SENSOR {
portal command; cancel; ack; sight;
inst TX; RX;
bind

command -- TX.command;
cancel -- TX.cancel;
ack -- TX.ack;
sight -- RX.sight;

}

Figure 3 - Description of SENSOR component in Darwin 

Primitive Component behaviour 
The behavioural specification for SENSOR involves 
describing each of its primitive sub-components as a finite 
state automata in a CSP-like[6]  notation. This notation is 
used as a concise way of describing the Labelled 
Transition System (LTS) of the component for analysis 
purposes. It is an “ascii” notation to simplify parsing by 
the analysis tools.  

const NBAD = 2 //number of badges

RX = (sight[b:1..NBAD] -> RX).

command.1

command.2

ack.1
cancel.1

ack.2
cancel.2

-1 0 1 2

command.1
command.2

command.1
command.2

sight.1
sight.2

0

TX = (command[b:1..NBAD] ->
(ack[b] -> TX
| cancel[b] -> TX
| command[c:1..NBAD]->ERROR)).

 
Figure 4 - Component RX & TX behaviour specification  

(transitions go clockwise, -1 labels the ERROR state). 



Figure 4 gives the primitive component specification 
together with its LTS in diagrammatic form for RX and 
TX. These diagrams are generated by our analysis tools as 
an aid to comprehension. The diagrams here illustrate the 
model for two badges (ie NBAD = 2). The RX 
specification simply states that a badge sighting for a 
badge can occur at any time. The specification for TX 
states that a command for a specific badge may be 
followed either by a request to cancel that command or an 
acknowledgement from that badge. The sensor hardware 
can only buffer one command to be sent to a badge at a 
time. Consequently, the specification states that an attempt 
to carry out another command before the previous 
command is either cancelled or acknowledged is an error.  
Note that actions are indexed/subscripted by the identity 
of the badge they apply to. In the implemented badge 
system, the badge identity is a parameter to actions.  In 
general, action subscripts provide a convenient way to 
model parameters for the purposes of analysis, although 
care must be taken to restrict the range of subscripts or 
intractable models may result. 
 
Composite Components 
Composite components are simply the parallel 
composition of their constituent behaviours. Processes 
synchronise on shared actions.  For example, the Darwin 
specification for the SENSOR component generates the 
following LTS specification: 
 
||SENSOR =(RX || TX)

@ {command, cancel, ack, sight}.

The LTS notation distinguishes between process 
expressions which may use action prefix (->), choice ( | ) 
and recursion to specify primitive component behaviour 
and composition expressions which may only use parallel 
composition (||) and re-labelling (/).  These restrictions 
mean that the notation can only describe finite and, 
consequently, potentially analysable models.  The simple 
composition expression for SENSOR does not require re-
labelling since actions  are referred to by the same label in 
the composite component as in the constituent primitive 
components. As we will see in the following, in general, 
bind statements in Darwin lead to re-labelling in the LTS 
specification.   The  @ symbol specifies the set of action 
labels (alphabet) which are visible at the interface of the 
component and thus may be shared with other 
components. It restricts the alphabet of the LTS to the 
actions which are prefixed by these labels. All other 
actions are “hidden” and will appear as “silent” or “tau” 
actions during analysis if they do not disappear during 
minimisation. Figure 5 gives the composite component 
structure for SENSORNET.   
 

sensor[1]
:SENSOR

SENSORNET
command

cancel
ack

sight

tx

rx

sensor[NLOC]
:SENSOR

 

interface TRANS {
command[1..NBAD][1..NLOC];
cancel [1..NBAD][1..NLOC];
ack [1..NBAD][1..NLOC];

}

interface REC {
sight [1..NBAD][1..NLOC];

}

component SENSORNET {
portal

tx: TRANS;
rx: REC;

forall j = 1 to NLOC {
inst sensor[j]:SENSOR;
forall k = 1 to NBAD bind

sensor[j].command[k]
-- tx.command[k][j];

sensor[j].cancel[k]
-- tx.cancel[k][j];

sensor[j].ack[k]
-- tx.ack[k][j];

sensor[j].sight[k]
-- rx.sight[k][j];

}
}

Figure 5 - composite component SENSORNET . 

A separate instance of SENSOR is declared for each 
location at which a badge may be detected. There are 
NLOC locations numbered from 1 to NLOC. The interface 
to SENSORNET is structured using Darwin interface types 
TRANS and REC. In an implementation, these translate to 
IDL descriptions with subscripts becoming operation 
parameters. In the behavioural specifications, interface 
instance names simply become action label prefix names. 
Interested readers who consult the badge system 
implementation in [3] will see that multiplex and de-
multiplex components are required to implement the 
complex binding between sensor components and the 
interface to the SENSORNET component. This is because 
in our abstract description, actions and thus interfaces do 
not have a physical location whereas in general an 



implementation will fix the provision of an interface to a 
specific server. In the sensor network, as depicted in 
Figure 2, sensors are controlled by different machines. 
The behavioural specification which corresponds to the 
Darwin description of SENSORNET is given below: 
 
||SENSORNET = (sensor[1..NLOC]:SENSOR)

/{rx.sight[i:1..NBAD][j:1..NLOC]
/sensor[j].sight[i],
tx.command[i:1..NBAD][j:1..NLOC]
/sensor[j].command[i],
tx.ack[i:1..NBAD][j:1..NLOC]
/sensor[j].ack[i],
tx.cancel[i:1..NBAD][j:1..NLOC]
/sensor[j].cancel[i]}
@{rx,tx}. 

 
Component instantiation is modelled by creating a copy of 
a process (eg. SENSOR) with each action label contained 
in the process prefixed by the instance name. Thus the 
command[1] action provided by SENSOR becomes 
sensor[2].command[1] in  the instance sensor[2].
Re-label specifications are of the form new-label/old-
label.

2.2 Location Service 
The badge system location service stores the current 
location of each badge as determined from the sighting 
events generated by the sensor network. The location 
service is represented as the component LOCATE with 
interfaces as described below in Figure 6.  The interface of 
type REC is as described in Figure 5. The LOC interface 
provides a means to query the location of a badge with the 
location of that badge reported by a corresponding at 
event. If a badge changes location then the location 
service uses the at event to signal the change 
spontaneously . 
 

LOCATE
rx:REC where:LOC

 
 
interface LOC {

query[1..NBAD]; at[1..NBAD][1..NLOC];
} 

Figure 6 - location service component SENSORNET

The behaviour  of LOCATE was implemented as a single 
process in Regis, however, to specify the behaviour 
succinctly, we can utilise concurrency. The current 
location of each badge is stored by a BADGELOC 
process. The LOCATE service is then the concurrent 
composition of these processes as shown below. 
 

 
 
BADGELOC = BADGELOC[1],
BADGELOC[i:1..NLOC]

=(sight[i] -> BADGELOC[i]
|{sight[j:1..i-1],sight[j:i+1..NLOC]}

-> at[j] -> BADGELOC[j]
| query -> at[i] -> BADGELOC[i]
).

// service stores locations of all badges
||LOCATE = (badgeloc[1..NBAD]:BADGELOC)

/{rx.sight[i:1..NBAD][j:1..NLOC]
/badgeloc[i].sight[j],
where.query[i:1..NBAD]
/badgeloc[i].query,
where.at[i:1..NBAD][j:1..NLOC]
/badgeloc[i].at[j]}}
@{rx,where}.

It would be possible to describe LOCATE as a 
composition of BADGELOC processes using Darwin, 
however, the concurrency in LOCATE is more an artefact 
of the modelling technique than a requirement of the 
architecture, consequently, this was not done. This has not 
restricted the freedom to have LOCATE as either a 
primitive or a composite component during design and 
implementation.  

2.3 Command Execution 
Executing a badge command is analogous to setting up a 
telephone call.  As with telephone call processing 
software, the Regis implementation of the badge system 
created a new component/ process to deal with each 
request to execute a badge command[9]. When describing 
behaviour, we can only accommodate static process 
structures and consequently, command execution is 
modelled by replication with one BADGECOM per badge. 
When requested to page a badge, the BADGECOM 
component must first determine the location of that badge 
and then reserve the sensor at that location for its 
exclusive use. This exclusion is required since, as 
specified in section 2.1, each sensor has only a single 
command buffer. This exclusion is provided by a  LOCK 
component per location.  The resulting structure is 
depicted in Figure 7. 
 

COMEXEC

where:LOC
exec:XEC

tx:TRANS com[1..NBAD]
:BADGECOM

lock[1..NBAD]
:LOCK

acquire release

 
 



interface XEC {
page[1..NBAD]; confirm[1..NBAD]; }

Figure 7 - command execution component COMEXEC

In the interests of brevity, we have omitted the Darwin 
description. The behavioural specification of  the LOCK 
component is shown below: 
 
LOCK =(acquire[i:1..NBAD]

-> release[i] -> LOCK).

This specifies that when the lock is acquired by a 
BADGECOM component it must be released by the same 
component (same index) before the lock can be acquired 
again. The specification for BADGECOM is: 

BADGECOM
=(page-> QUERY
|at[j:1..NLOC] -> BADGECOM),

QUERY
=(query -> at[i:1..NLOC] -> GETLOCK[i]

|at[j:1..NLOC] -> GETLOCK[j]),
GETLOCK[i:1..NLOC]

=(acquire[i] -> EXEC[i]
|at[j:1..NLOC] -> GETLOCK[j),

EXEC[i:1..NLOC]
=(command[i] -> WAITACK[i]
|at[j:1..NLOC] -> release[i]

->GETLOCK[j]),
WAITACK[i:1..NLOC]

=(ack[i] -> release[i] -> success
-> BADGECOM

|at[j:1..NLOC] -> cancel[i]
-> release[i] -> GETLOCK[j]).

 
Note that at any stage of the command execution protocol, 
it is possible for the badge to change location (signalled by 
at) and consequently, BADGECOM must release the lock 
for that location and cancel the command before trying to 
execute the command at the new location(see EXEC).  For 
completeness, the specification of COMEXEC is: 
 
||COMEXEC = (com[1..NBAD]:BADGECOM

|| lock[1..NLOC]:LOCK)
/{lock[i:1..NLOC].acquire[j:1..NBAD]

/com[j].acquire[i],
lock[i:1..NLOC].release[j:1..NBAD]
/com[j].release[i],
tx.command[i:1..NBAD][j:1..NLOC]
/com[i].command[j],
tx.cancel[i:1..NBAD][j:1..NLOC]
/com[i].cancel[j],
tx.ack[i:1..NBAD][j:1..NLOC]
/com[i].ack[j],
where.query[i:1..NBAD]
/com[i].query,
where.at[i:1..NBAD][j:1..NLOC]
/com[i].at[j],
exec.page[i:1..NBAD]
/com[i].page,
exec.confirm[i:1..NBAD]
/com[i].success

} @{where,exec,tx}.

2.4 Active Badge service 
The complete active badge service is provided by the 
BADGEMAN component as depicted in Figure 8 together 
with the composition expression describing its behaviour.  
The interested reader may again check with [9] to see that 
the architecture of the original implementation architecture 
has been closely followed in developing the behaviour 
specification. 
 

BADGEMAN

LOCATE

COMEXEC

SENSOR
-NET

where

exec

rx

tx

 
 
||BADGEMAN

= (SENSORNET || LOCATE || COMEXEC)
@ {where, exec} 

Figure 8 - Active Badge Service 

3. Architecture Behaviour Analysis 
The question that now must be answered is; given the 
behaviour specification, what can we do with it?  The 
approach we have taken is to use compositional 
reachability analysis to perform an exhaustive search of 
the state space of the LTS model generated from the 
behaviour specification.  
 
Deadlock 
The reachable state space for a system with two badges 
and five locations consists of 202,275 states (871,350 
transitions).  In the example outlined in the foregoing, 
there are no reachable deadlock or error states. However, 
an earlier version of the specification which omitted the 
line from BADGECOM shown in italics below: 

BADGECOM =(page-> QUERY
|at[j:1..NLOC] -> BADGECOM),

QUERY =(query -> at[i:1..NLOC]
-> GETLOCK[i]

|at[j:1..NLOC] -> GETLOCK[i]),
This did result in a deadlock. Our analysis tools produced 
the following trace of an action sequence in a system with 
two badges (NBAD=2) which would lead to deadlock: 

Trace to DEADLOCK:
<rx.sight.1.2, rx.sight.2.2
exec.page.1, exec.page.2>



This is the situation where each badge has moved to 
location 2 and consequently the LOCATE component is 
trying to execute the actions indicating there has been a 
change of location ( at.1.2, at.2.2 ). However, users 
have instigated page commands on both badges and 
consequently, the BADGECOM for each process is trying 
to execute a query on LOCATE and is thus not able to 
synchronise with at. Similarly, LOCATE cannot 
synchronise with query - thus deadlock. 
 
Error States  
A (deliberately) incorrect implementation of the LOCK 
component which did not provide mutual exclusion 
yielded the following output from a reachability analysis: 
 
Trace to property violation in SENSORNET:
<rx.sight.1.2, rx.sight.2.2,
exec.page.1, where.at.1.2,
tx.command.1.2, exec.page.2,
where.at.2.2, tx.command.2.2>

This is clearly the case where two commands have been 
executed on the sensor at location 2.   
 
Property Automata 
Checks can be made that the model satisfies certain safety 
properties by  specifying these properties as automata and 
composing them with the system[ ]. For example, the 
following property depicted in Figure 9 together with the 
automata it generates asserts that a page request for badge 
ID must always be followed by a confirmation. 

exec.page.1

exec.confirm.1

exec.page.1

exec.confirm.1

-1 0 1

property
CONFIRM(ID=1) =(exec.page[ID]

-> exec.confirm[ID]
-> CONFIRM).

Figure 9 - property CONFIRM 

Test  Scenarios 
In addition to exhaustive testing, the analysis tools permit 
a user to animate various test scenarios and examine the 
resulting trace of actions. For example, the following trace 
is the scenario in which badge 1 changes location  from 1 
to 3 while there is a page request outstanding for it: 
 
<exec.page.1, where.query.1
where.at.1.1 -- badge 1 at  location 1
lock.1.acquire.1, tx.command.1.1
rx.sight.1.3 -- badge 1 moved to location 3 
where.at.1.3, tx.cancel.1.1

lock.1.release.1, lock.3.acquire.1
tx.command.1.3, tx.ack.1.3
lock.3.release.1, exec.confirm.1>

4. Conclusion 
Software Architecture provides a sound basis for both 
design and implementation [8,9,10]. In this paper, we have 
illustrated the use of the Software Architectural 
specification of a system as the basis for analysis.  Our 
approach to specifying the behaviour of architectural 
elements using a process calculus notation differs only in 
detail from that outlined in [1]. Our approach is 
distinguished by the direct use of the structural 
architecture description for both construction and analysis 
and in the analysis techniques utilised. We are currently 
investigating the applicability of our approach in the 
context of industrial case studies.
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